Local RBF Approximation for Scattered Data Fitting with Bivariate Splines
نویسندگان
چکیده
In this paper we continue our earlier research [4] aimed at developing efficient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms were selected using a greedy knot insertion algorithm. In this paper standard radial local approximations based on interpolation or least squares are considered and a faster procedure is used for knot selection, significantly reducing the computational cost of the method. Error analysis of the method and numerical results illustrating its performance are given.
منابع مشابه
Local hybrid approximation for scattered data fitting with bivariate splines
We suggest a local hybrid approximation scheme based on polynomials and radial basis functions, and use it to improve the scattered data fitting algorithm of [7]. Similar to that algorithm, the new method has linear computational complexity and is therefore suitable for large real world data. Numerical examples suggest that it can produce high quality artifact–free approximations that are more ...
متن کاملThe convergence of three L1 spline methods for scattered data interpolation and fitting
The convergences of three L1 spline methods for scattered data interpolation and fitting using bivariate spline spaces are studied in this paper. That is, L1 interpolatory splines, splines of least absolute deviation, andL1 smoothing splines are shown to converge to the given data function under some conditions and hence, the surfaces from these three methods will resemble the given data values...
متن کاملA Domain Decomposition Method for Computing Bivariate Spline Fits of Scattered Data
A domain decomposition method for solving large bivariate scattered data fitting problems with bivariate minimal energy, discrete least-squares, and penalized least-squares splines is described. The method is based on splitting the domain into smaller domains, solving the associated smaller fitting problems, and combining the coefficients to get a global fit. Explicit error bounds are establish...
متن کاملScattered Data Fitting on Surfaces Using Projected Powell-Sabin Splines
We present C methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ω embedded into R. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorit...
متن کاملScattered Data Fitting with Nonnegative Preservation using Bivariate Splines and Its Application
We study how to use bivariate splines for scattered data interpolation and fitting with preservation of non-negativity of the data values. We propose a minimal energy method to find a C1 smooth interpolation/fitting of non-negative data values from scattered locations based on bivariate splines. We establish the existence and uniqueness of the minimizer under mild assumptions on the data locati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016